
Object Oriented Programming 3
rd

 Semester Computer Engineering

 University of Engineering and Technology Taxila

 1

LAB10 INTERFACES

Objective

In the lecture you were described interface features of Object Oriented Programming. This

lab will help you understand the rules of defining programmer defined interfaces and how they are

implemented. We will explain how interfaces allow subclasses to exhibit multiple inheritance which is not

allowed normally in Java.

Understanding Interfaces

As you have already learned, objects define their interaction with the outside world through

the methods that they expose. Methods form the object's interface with the outside world; the buttons on

the front of your television set, for example, are the interface between you and the electrical wiring on the

other side of its plastic casing. You press the "power" button to turn the television on and off.

In its most common form, an interface is a group of related methods with empty bodies. A

Vehicle's behavior, if specified as an interface, might appear as follows:

interface Vehicle {

 void move (int distance);

 double getDistanceTravelled();

 void setSpeed (double speed);

 double getSpeed() ;

 void setTopSpeed(double tspeed);

 double getTopSpeed();

 boolean isBroken();

 int getSeats ();

 void setSeats (int seats);

 void setPropulsionTechnology(String technology);

 String getPropulsionTechnology(); // fueling mechanism

 void setPick(double pick);

 double getPick();

}

Object Oriented Programming 3
rd

 Semester Computer Engineering

 University of Engineering and Technology Taxila

 2

To implement this interface, the name of your class would change (to Automobile, for

example), and you'd use the implements keyword in the class declaration:

class Automobile implements Vehicle {

// All methods of the interface and remainder of this class implemented as before

}

Implementing an interface allows a class to become more formal about the behavior it

promises to provide. Interfaces form a contract between the class and the outside world, and this contract

is enforced at build time by the compiler. If your class claims to implement an interface, all methods

defined by that interface must appear in its source code before the class will successfully compile. A class

can implement any number of interfaces it desires unlike inheritance in which only one class can be

inherited. So in this way multiple inheritance is achieved through Interfaces.

EXERCISE

1. Modify the shape inheritance program developed in last lab to include following interfaces with

shape class implementing all of them.

Colorable interface

interface Colorable

{

 // sets the color of the implementing object

 public void setColor(java.awt.Color c);

 // gets the color of the implementing object

 public java.awt.Color getColor();

 }

Object Oriented Programming 3
rd

 Semester Computer Engineering

 University of Engineering and Technology Taxila

 3

Rotateable interface

interface Rotatable

{

 // rotate the implementing object at angle degrees about point pt.

 void rotate(JPoint pt,double angle);

}

Translateable interface

interface Translateable

{

// translate the object according to tx and ty.

void translate(int tx, int ty);

}

Scaleable interface

interface Scaleable

{

// Scale the object according to sx and sy.

 void scale(int sx,int sy);

 }

Develop a runner program with the following specification

Create any shape object of any coordinates and set its colour to java.awt.Color.PINK.

Rotate it in a circle around point (250 , 250) in steps of 10 degrees and redraw it after each step.

During complete rotation translate shape according to (5 ,5) before each step. After that change

the colour to java.awt.Color.RED and scale it by (2,1) and redraw it again.

Object Oriented Programming 3
rd

 Semester Computer Engineering

 University of Engineering and Technology Taxila

 4

Hint:

For Colorable interface use setBodyColor(java.awt.Color) & java.awt.Color getBodyColor() functions of

Turtle Class.

 Hint:

For Rotateable interface consider the point at the center of a circle with radius equal to distance between

the point and the corresponding point defining the shape, rotate it according to rotation formulae about a

fixed point and change the value of point defining the shape. Use same technique for all the points

defining the shape.

.

Hint:

For Translateable interface use the following formulae to translate according to a point

X`= X + tx

Y`= Y + ty

Hint:

For Scaleable interface use the following formulae to scale according to values

X`= X *sx

Y`= Y *sy

2. You are asked to develop the password validation system for UET network. The specifications

given are as follows:

a) Develop an interface named Validator. It has only one function setPassword(String s).

b) Develop a class named User which implements Validator. Its specifications are as follow:

It has following members

Object Oriented Programming 3
rd

 Semester Computer Engineering

 University of Engineering and Technology Taxila

 5

• String UserID: It stores user ID.

• String Password: It stores a valid user password.

It has following constructors

• User(String userid) : It initializes UserID with argument string

and set Password to UET1234.

• User(String userid,String password) : It initializes UserID and Password. If

password is not valid them Password is set to

UET1234.

It has following member functions

• Public void setPassword(String PWord) : Same function implemented due to interface sets a

valid Password.

• Public boolean isValid (String PWord) : Returns a value which indicates whether Password is

valid or not

Validation Criteria

Following validation criteria should be fulfilled.

1. A password must have a minimum length of 8 characters

2. A password must have a minimum of three, of these types of characters.

• An upper case character

• A lower case character

• A digit

• A special character ! , @, #, $ or %.

3. A password must not match 5 consecutive characters compared without case with

previous password

4. A password must not match 5 consecutive characters compared without case with

UserID.

Develop a program which instantiate an object of User class and set different valid and invalid

passwords and show class response.

